На правах рукописи

БИРЮКОВ МИХАИЛ МИХАЙЛОВИЧ

МОЛЕКУЛЯРНЫЕ КАСКАДЫ, ОПРЕДЕЛЯЮЩИЕ СЕЛЕКТИВНОСТЬ ЦИТОТОКСИЧЕСКОГО ДЕЙСТВИЯ ХОЛОДНОЙ ПЛАЗМЫ АТМОСФЕРНОГО ДАВЛЕНИЯ В ОТНОШЕНИИ ОПУХОЛЕВЫХ КЛЕТОК

1.5.4 – биохимия

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата химических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте химической биологии и фундаментальной медицины СО РАН

Научный руководитель:

Коваль Ольга Александровна, д.б.н.

Официальные оппоненты:

Жарков Дмитрий Олегович, д.б.н., профессор РАН, академик РАН. Федеральное государственное бюджетное учреждение науки Институт химической биологии и фундаментальной медицины СО РАН, зав. лабораторией.

Копылов Алексей Михайлович, д.х.н., Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова», профессор.

Волчо Константин Петрович, д.х.н., Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН, г.н.с.

Защита диссертации состоится «03» октября 2025г. в 10:00 часов на заседании диссертационного совета ИХБФМ.02.01 Института химической биологии и фундаментальной медицины СО РАН по адресу: 630090, Новосибирск, проспект академика Лаврентьева, 8.

С диссертацией можно ознакомиться в научной библиотеке ИХБФМ СО РАН и на сайте www.niboch.nsc.ru.

Автореферат разослан «01» сентября 2025 г.

Ученый секретарь диссертационного совета, кандидат химических наук

Пестряков П.Е.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

В настоящее время наиболее распространенные подходы к терапии онкологических заболеваний включают в себя хирургическую резекцию в случае солидных опухолей, химиотерапию, лучевую, гормональную терапию, иммунотерапию и различные варианты таргетной терапии. Гетерогенность клеток опухоли, способность приобретать устойчивость к препаратам, а также серьезные побочные эффекты терапии обуславливают актуальность разработки новых подходов к терапии онкологических заболеваний, в том числе основанных на физико-химических воздействиях.

Холодная плазма представляет собой частично ионизированный под действием электромагнитного поля газ, в потоке которого образуются активные формы кислорода и азота (АФКА). В исследованиях последних лет было показано, что при определенных параметрах газового разряда плазма способна цитостатическое цитотоксическое И онкотрансформированные клетки человека в культуре, а также *in vivo* на животных с трансплантированными опухолями. Успехи в экспериментах на животных стимулировали развитие технологий создания плазма-генерирующих устройств различной геометрии, некоторые из которых прошли первую стадию клинических исследований (2023 год, США). Несмотря на достигнутые успехи, противоопухолевого действия и параметры, определяющие селективность воздействия холодной плазмы на опухолевые клетки, остаются не до конца изученными, что препятствует внедрению этого подхода в клинику и вовлечению в терапию дополнительных молекулярных мишеней.

В 2018-м году сотрудниками Института теоретической и прикладной механики (ИТПМ) им. С.А. Христиановича и Института физики полупроводников (ИФП) им. А.В. Ржанова СО РАН под руководством д.ф.-м.н. Швейгерт И.В. и д.ф.-м.н. Закревского Д.Э. был создан оригинальный генератор холодной плазменной струи (ХПС). Экспериментальная установка позволяет, основываясь как на данных математического моделирования плазмохимических реакций, так и на данных биологических экспериментов, варьировать в широких диапазонах параметры газового разряда: электродную конфигурацию, тип и амплитуду напряжения, частоту, состав используемого газа. В Лаборатории биотехнологии ИХБФМ СО РАН Патраковой Е.А. был проведен цикл работ по определению параметров генерации ХПС, обеспечивающих дозозависимую гибель клеток различных культур *in vitro*. Таким образом, стало возможным проведение исследований, решающих актуальную задачу по определению молекулярных механизмов, определяющих селективную гибель опухолевых клеток в ответ на обработку ХПС.

Целью исследования было выявление ключевых молекулярных каскадов, определяющих селективность цитотоксического действия холодной плазмы в отношении опухолевых клеток. Для достижения цели были сформулированы следующие задачи:

- 1. Определить параметры обработки культивируемых клеток человека струей холодной плазмы, обеспечивающие снижение жизнеспособности преимущественно опухолевых клеток.
- 2. Изучить динамику уровней внеклеточных и внутриклеточных АФКА, а также продуктов перекисного окисления липидов после обработки ХПС в опухолевых А-549 и здоровых Wi-38 клетках легкого человека в культуре.
- 3. Выявить базовые различия в транскрипционной активности клеток А-549 и Wi-38, потенциально обеспечивающие разную чувствительность к окислительному стрессу.
- 4. Изучить ранний и поздний ответы здоровых и опухолевых клеток на облучение ХПС на основании анализа транскриптома и анализа изменений основных молекулярных маркеров на примере клеточных линий А-549 и Wi-38. Предложить молекулярную модель, объясняющую селективность ХПС по отношению к опухолевым клеткам.
 - 5. Исследовать противоопухолевую активность ХПС на мышиной модели.

Научная новизна полученных результатов и практическая значимость

В рамках данной работы впервые проведено комплексное исследование молекулярных механизмов ответа опухолевых и нетрансформированных клеток человека на обработку струей холодной плазмы, направленное на выявление ключевых молекулярных каскадов, определяющих относительную селективность цитотоксического действия холодной плазмы в отношении опухолевых клеток. Показано, что применение параметров струи, обеспечивающих полуселективное онкосупрессорное действие *in vitro*, оказывает противоопухолевые эффекты при прямой обработке ХПС *in vivo*.

Впервые проведен сравнительный анализ транскриптома опухолевых и неопухолевых клеток одного гистологического происхождения и показано, что обработка ХПС приводит к транскрипционным изменениям в обеих культурах клеток. Показано, что селективность воздействия обусловлена индукцией стресса ЭПР в опухолевых, но не в здоровых клетках. Продемонстрирована взаимосвязь между инициацией ответа на стресс ЭПР, аутофагии и апоптоза в обработанных опухолевых клетках. Проведена оптимизация параметров обработки ХПС для применения на животных-опухоленосителях и показан противоопухолевый потенциал обработки.

Полученные данные могут служить основой для подбора препаратовпартнеров для таргетного воздействия на выявленные сигнальные пути. Комбинация обработки ХПС с этими препаратами позволит повысить эффективность и безопасность воздействия, снизив дозу облучения, а также увеличить селективность терапии.

Основные положения, выносимые на защиту

- 1. Варьирование параметров прямой обработки клеток холодной плазменной струей (ХПС) позволяет добиться селективной гибели опухолевых клеток без увеличения температуры обрабатываемого объекта выше 40°С.
- 2. Динамика концентраций активных форм кислорода и азота (АФКА) в культуральной среде и внутри опухолевых и здоровых клеток после воздействия ХПС отражает генерацию вторичных АФКА и длительность нахождения клеток в состоянии окислительного стресса.
- 3. Обработка ХПС в условиях, индуцирующих селективную гибель опухолевых клеток, вызывает повреждения ДНК, которые эффективно подвергаются репарации в клетках.
- 4. Клетки аденокарциномы легкого A-549 в сравнении с фибробластами легкого Wi-38 характеризуются повышенной экспрессией генов, вовлеченных в анаболические процессы, а также генов, обеспечивающих нейтрализацию AФКА и репарацию окислительных повреждений биомолекул.
- 5. Индукция аутофагии является ранним ответом на облучение ХПС и направлена на поддержание гомеостаза клетки. Ингибитор аутофагии хлорохин усиливает цитотоксической действие ХПС *in vitro*.
- 6. Активация сигнального пути СНОР вследствие окислительного стресса ингибирует аутофагию и стимулирует стресс эндоплазматического ретикулума (ЭПР), направленный на гибель клетки. Активация ответа на стресс ЭПР характерна только для опухолевых клеток.
- 7. Обработка ХПС опухолевых узлов мышей приводит к торможению роста опухолей в режиме монотерапии.

Апробация результатов и публикации

Материалы диссертации вошли в 4 публикации в рецензируемых научных журналах: Biomolecules, Cells, Plasma Medicine, Plasma Sources Science and Technology. Результаты были представлены на 10 конференциях.

Личный вклад автора

Основная часть работы выполнена либо автором лично, либо при его непосредственном участии на всех этапах проведения исследования. Планирование экспериментов и обсуждение результатов проведено под руководством д.б.н. Коваль О.А.

Обработка клеток холодной плазменной струей выполнена либо автором, либо сотрудниками Лаборатории биотехнологии: Патраковой Е.А., Крячковой Н.В., Поляковой А.А., в Институте физики полупроводников СО РАН совместно

с Милахиной Е.В. (ИФП СО РАН), д.ф.-м.н. Закревским Д.Э. (ИФП СО РАН) и д.ф.-м.н. Швейгерт И.В. (ИТПМ СО РАН). Эмиссионные спектры плазменной струи записаны сотрудниками ИФП СО РАН: Милахиной Е.В. (ИФП СО РАН), Закревским Д.Э. Подготовка библиотек секвенирование транскриптома проводилось Междисциплинарном клеток В коллективного пользования Казанского федерального университета. In silico анализ транскриптома клеток в одном из его вариантов выполнен с.н.с. Лаборатории биотехнологии ИХБФМ СО РАН к.х.н. Семеновым Д.В. Функциональный дифференциально анализ экспрессирующихся выполнен автором совместно с Семеновым Д.В. Электронная микроскопия образцов клеток проведена в группе микроскопических исследований ИХБФМ СО РАН Полетаевой Ю.Е. Эксперименты *in vivo* проводились совместно с Поляковой А.А., Крячковой Н.В., Варламовым М.Е. и к.б.н. Троицкой О.С.

Объем и структура диссертации

Диссертация состоит из введения, обзора литературы, экспериментальной части, результатов исследования и их обсуждения, заключения, выводов, списка использованной литературы, содержащего 300 источников. Работа содержит 197 страниц, 61 рисунок, 24 таблицы, 2 приложения.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Определение условий генерации ХПС и обработки, обеспечивающих преимущественную гибель опухолевых клеток

На основании работ, проведенных ранее совместно с сотрудниками Института теоретической и прикладной механики СО РАН и Института физики полупроводников СО РАН, был выбран режим генерации ХПС, обеспечивающий дозозависимый цитотоксический эффект в отношении опухолевых клеток человека и мыши: режим с синусоидальным напряжением, амплитудой 3,5 кВ, частотой 52 кГц и скоростью гелия 9 л/мин. Было показано отсутствие нагрева области обработки выше 40°С на примере керамической пластины. Температура обрабатываемой культуральной среды не поднималась более чем на 1°С.

Для исследования чувствительности клеток легкого к действию ХПС, генерируемой в синусоидальном режиме, использовали клеточные линии карциномы легкого человека А-549, А-427 и NCI-H23, а также фибробласты легкого человека Wi-38 и MRC-5. Жизнеспособность клеток оценивали через 24 ч после обработки методом МТТ-теста. Клетки обрабатывали в течение 5-120 с, оставляя остальные параметры неизменными.

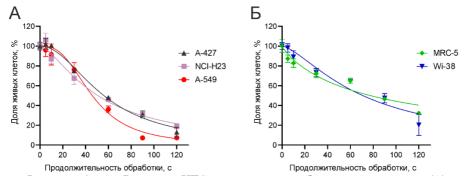


Рисунок 1 — Влияние XПС на жизнеспособность опухолевых (A) и нетрансформированных (Б) клеток легкого человека *in vitro*.

Было показано, что обработка клеток XПС вызывает дозозависимое снижение жизнеспособности как опухолевых, так и здоровых клеток. При этом опухолевые клетки были более чувствительными к обработке. Индекс селективности обработки XПС, рассчитанный для пары Wi-38 – A-549, составил 1,5, для пары MRC-5 — A-549 – 1,7. Был показан не только цитотоксический, но и цитостатический эффект обработки (Рисунок 2).

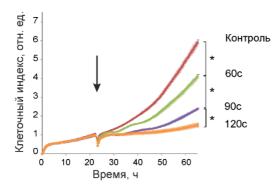


Рисунок 2 – Анализ пролиферации клеток аденокарциномы легкого А-549 после обработки ХПС. Данные получены при помощи анализатора режиме реального времени iCelligence. Результаты представлены среднее как значение клеточного индекса, рассчитанное по двум повторам ± стандартное отклонение. Стрелка указывает момент обработки ХПС. Статистическая значимость обозначена как *р ≤ 0.05, тест Манна-Уитни.

Результаты были подтверждены также на клетках аденокарциномы молочной железы (МСГ-7) и на нетрансформированных клетках молочной железы человека (МСГ-10А). Для дальнейших экспериментов была выбрана пара культур – клетки аденокарциномы легкого А-549 и фибробласты легкого Wi-38. Такой выбор обусловлен широким использованием культуры А-549 в работах других исследователей, что делает возможным сравнение данных, полученных в разных условиях и на разных установках.

- 2. Динамика уровней внутриклеточных и внеклеточных активных форм кислорода и азота после воздействия XIIC
- 2.1 Динамика концентраций внеклеточных нитрит-ионов в культуральной среде клеток после обработки XПС

Концентрацию внеклеточных нитрит-ионов в среде после обработки оценивали методом Грисса через 0.5-4 ч после обработки ХПС в течение 1 или 2 минут (Рисунок 3).

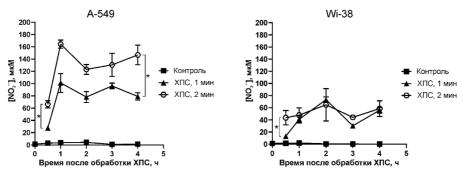


Рисунок 3 — Динамика концентрации нитрит-ионов в культуральной среде клеток после обработки ХПС для клеток аденокарциномы легкого человека A-549 (слева) и фибробластов легкого человека Wi-38 (справа). Данные количественного спектрофотометрического определения нитрит-ионов методом Грисса. Результаты представлены как среднее значение концентраций, рассчитанное по трем повторам \pm стандартное отклонение. Статистическая значимость обозначена как *p \leq 0.05, тест Манна-Уитни.

Обработка ХПС вела к увеличению концентрации NO²⁻ в культуральной среде как опухолевых, так и здоровых клеток. Несмотря на количественные различия, характер изменения концентраций нитрит-ионов в среде обработанных ХПС клеток обеих культур проявляла общую закономерность. Так, первоначальный рост концентрации (через 1 ч для A-549 и 2 ч для Wi-38) вероятнее всего связан с образованием первичных нитрит-ионов при взаимодействии плазмы с окружающим воздухом, растворением этих нитрит-ионов в среде, а также реакциями других азотсодержащих молекул, например, диоксида азота и монооксида азота, с водой и АФК как в газовой, так и в жидкой фазе, и их растворением в среде

2.2 Изменение баланса АФКА внутри клеток после обработки ХПС

Для оценки динамики изменения содержания внутриклеточных АФКА клетки культур А-549 и Wi-38 облучали ХПС, после чего к культивируемым клеткам добавляли диацетат 2',7'-дихлородигидрофлуоресцеина (H₂DCFDA) и далее анализировали методом проточной цитометрии долю DCF-положительных клеток (Рисунок 4).

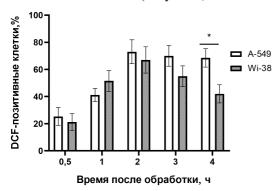


Рисунок 4 Динамика относительного уровня активных форм кислорода и азота внутри клеток культур А-549 и Wi-38. Представлены данные проточной цитометрии клеток, инкубированных с H₂DCFDA. Результаты представлены как среднее значение разности долей положительных клеток в образце обработанных клеток и в образце необработанных клеток, рассчитанное по трем повторам ± стандартное отклонение.

Статистическая значимость обозначена как *p \le 0.05, тест Манна-Уитни.

Обработка ХПС приводит к увеличению доли клеток с высоким содержанием АФКА. Первоначальное увеличение (30 мин после обработки) доли таких клеток наиболее вероятно отражает проникновение первичных АФКА. Дальнейшее резкое увеличение (1-2 ч после обработки) содержания АФКА обусловлено, наиболее вероятно, эффектом вторичных АФКА, образуемых в клетке в условиях окислительного стресса.

2.3 Динамика перекисных повреждений липидов мембран клеток после обработки XIIC

Одним из важных типов биомолекул, подвергающихся повреждению АФКА, являются липиды, в частности, ненасыщенные жирные кислоты, экспонированные внутрь бислоя мембран клетки и ее органелл. Для исследования накопления пероксидов липидов клетки А-549 обрабатывали ХПС в течение 60 с и через 1, 3 и 6 часов окрашивали реагентом ВОDIРY^{ТМ} 581/591 С11 и анализировали методом проточной цитометрии (Рисунок 5).

Наблюдалось двухэтапное увеличение доли окисленных липидов мембран. Можно предположить, что первоначальное повышение в течение 30 мин после обработки ХПС обусловлено окислением мембран первичными АФКА. Доля окисленных липидов снижается к 1,5 часам после обработки и далее

наблюдается повторное увеличение этого показателя, которое может быть обусловлено окислением липидов под действием вторичных АФКА. Снижение доли к 1,5 ч может быть обусловлено активацией систем, устраняющих перекисные повреждения липидов.

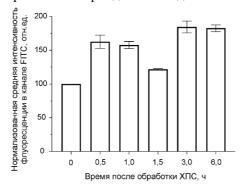


Рисунок 5 — Динамика перекисного окисления липидов в клетках A-549 через 0,5, 1, 1,5, 3, 6 часов после обработки ХПС. Данные представлены как средние значение интенсивностей флуоресценции в канале FITC (окисленный краситель), нормализованные на значение контрольного образца (в точке 0ч), рассчитанные по двум повторам ± стандартное отклонение.

3. Изменения в транскриптоме клеток после обработки ХПС

Для изучения механизма ответа клеток на обработку XПС использовали полнотранскриптомное секвенирование. Клетки аденокарциномы легкого культуры A-549 и фибробласты легкого культуры Wi-38 обрабатывали ХПС в стандартных условиях в течение 60 или 120 с. Использовали по 2 биологических повтора, глубина секвенирования составила 9,4 – 12,6 млн прочтений/образец.

Проводили поиск дифференциально экспрессирующихся генов в образцах клеток.

3.1 Отличия в транскриптомах клеточных линий A-549 и здоровых фибробластов легкого Wi-38, определяющие метаболическую активность клеток и чувствительность к окислительному стрессу

Для анализа ответа облученных клеток на обработку ХПС важно понимать отличия между выбранными опухолевыми и здоровыми клетками на базовом уровне. Интерес в рамках данной работы представляют различия метаболизма клеток, в том числе различия в экспрессии генов, продукты которых участвуют в нейтрализации АФКА, так как эти процессы определяют баланс АФКА в клетке и, следовательно, предрасположенность к окислительному стрессу. Был проведен поиск дифференциально экспрессирующихся ($|log_2FC| > 1$) генов в образцах опухолевых клеток легкого человека культуры A-549 здоровых фибробластов легкого Wi-38. Использовали контрольные, необработанные

ХПС, образцы клеток. Функциональный анализ генов показал активацию экспрессии генов белков, участвующих в метаболизме глюкозы, в окислительном фосфорилировании, анаболических процессах: синтезе жирных кислот, нуклеотидов, в синтезе и транспорте аминокислот. Кроме того, в опухолевых клетках A-549 наблюдается повышенная экспрессия генов, участвующих в нейтрализации АФКА, в том числе генов, экспрессия которых регулируется транскрипционным фактором NRF2.

3.2 Функциональный анализ дифференциально экспрессирующихся генов в образцах клеток после обработки XПС

В опухолевых клетках, обработанных ХПС, была показана активация транскрипционных факторов NFE2L2, TP53, KLF4, STAT3, NFKB1, NELFE, CEBPB/D, в фибробластах легкого – факторов MAX, MYC, RELA, TP53, NFIC. В клетках обеих культур наблюдалась активация сигнальных путей р53, NF-kB, KRAS, регуляция апоптоза. В опухолевых клетках была показана индукция ответа на стресс эндоплазматического ретикулума (ЭПР). Кроме того, в опухолевых и здоровых клетках подавлялась активность транскрипционных факторов AR, NFYA/B, E2F4, а также наблюдалось ингибирование митоза и сигнального пути mTORC1.

4. Молекулярные механизмы, задействованные в ответе клеток на обработку XПС

4.1 Изменение экспрессии генов раннего ответа на стресс в клетках, обработанных XПС

Для подтверждения данных транскриптомного были выбраны гены *FOS*, *ATF3*, *KLF4*, экспрессия которых активируется в ответ клеток на стресс, в том числе окислительный стресс, и ген *GADD45B*, экспрессия которого активируется в ответ на повреждение ДНК. Экспрессию этих генов на уровне мРНК оценивали при помощи ОТ-ПЦР РВ с использованием ген-специфических праймеров (Рисунок 6).

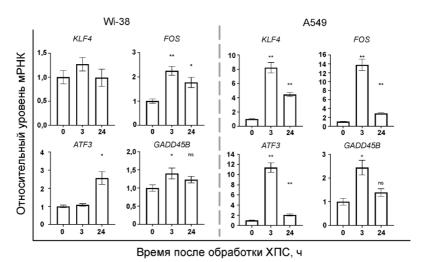


Рисунок 6 — Изменение уровней экспрессии генов *KLF4*, *FOS*, *ATF3*, *GADD45B* после обработки XПС на уровне мРНК. Результаты представлены как среднее значение, рассчитанное по четырем повторам \pm стандартное отклонение. Статистическая значимость обозначена как ns: p>0.05, *p \leq 0.05, **p \leq 0.01, тест Манна-Уитни, сравнение с контрольным образцом (точка 0 ч).

Была показана активация экспрессии исследованных генов в клетках обеих культур, при этом амплитуда изменений была выше для опухолевых клеток. Изменения уровней белковых продуктов генов *ATF3* и *GADD45B* изучали методом вестерн-блот анализа (Рисунок 7).

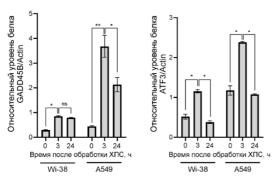
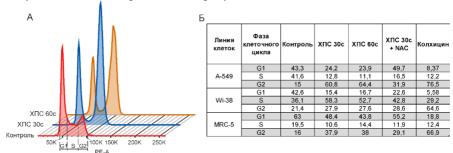


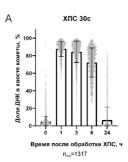
Рисунок 7 – Относительные уровни белков GADD45B и ATF3 через 3 и 24 ч после обработки измеренные методом вестерн-блоттинга. Результаты денситометрического анализа представлены среднее как значение, рассчитанное по двум повторам стандартное Статистическая отклонение. значимость обозначена как ns: $p>0.05, *p \le 0.05, **p \le 0.01, \text{ тест}$ Манна-Уитни.

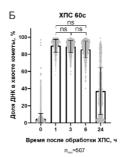
Изменения уровней белковых продуктов генов *ATF3* и *GADD45B* соответствуют изменению уровней мРНК этих генов и демонстрируют схожую динамику, однако отличаются по амплитуде изменений.

4.2 Изменения в прогрессии клеточного цикла клеток, обработанных XПС

Влияние обработки ХПС на митотический потенциал клеток изучали методом проточной цитометрии, предварительно окрашивая клетки йодидом пропидия. В качестве положительного контроля использовали колхицин (1,5 мкМ), который блокирует формирование веретена деления в митозе. Для ингибирования эффектов АФКА использовали N-ацетилцистеин (NAC, 5 мМ). Результаты анализа приведены на рисунке 8.




Рисунок 8 — Анализ влияния обработки ХПС на распределение клеток по фазам клеточного цикла. А — пример типичного распределения клеток A-549 по фазам клеточного цикла, наблюдаемое при оценке методом проточной цитометрии. Б — результаты анализа распределения клеток по фазам клеточного цикла методом проточной цитометрии.


Обработка ХПС приводит к блокированию перехода опухолевых клеток в митоз, причем этот эффект наблюдается как для обработки в течение 30 с, так и более продолжительной обработки в течение 60 с. В фибробластах легкого Wi-38 и MRC-5 также наблюдается увеличение доли клеток в фазе G2 клеточного цикла, однако значительно меньшее, чем в случае опухолевых клеток. Добавление N-ацетилцистеина к клеткам до обработки ХПС приводило к уменьшению доли клеток в фазе G2.

4.3 Повреждение геномной ДНК в клетках, обработанных ХПС

Остановка клеточного цикла в фазе G2/M может быть результатом активации ответа на повреждение ДНК. При анализе транскриптома была показана активация транскрипционного фактора TP53, а также экспрессии гена GADD45B, что также может указывать на повреждение геномной ДНК.

Для оценки степени повреждения геномной ДНК использовали щелочной вариант метода ДНК-комет. Результаты анализа представлены на рисунке 9.

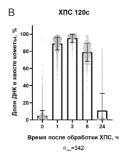


Рисунок 9 — Анализ динамики повреждений ДНК и их репарации в клетках A-549 методом ДНК-комет. Представлены результаты для клеток, обработанных ХПС в течение A-30c, B-60c, B-120c. Результаты представлены как среднее значение, рассчитанное по двум повторам \pm стандартное отклонение. Минимальное количество подсчитанных ДНК-комет (n_{min}) указано под каждым графиком. Статистическая значимость результатов рассчитана с использованием критерия Краскела-Уоллиса с поправкой на множественные сравнения. Различия между группами статистически значимы с p<0.005. Статистически незначимые результаты обозначены на рисунке как ns: p>0.05.

Обработка ХПС в дозах 30, 60 и 120 с приводит к резкому увеличению доли клеток с обширными повреждениями ДНК через 1 час после обработки, которая сохраняется на высоком уровне в течение 6 часов, после чего наблюдается снижение до уровня контрольных образцов к 24 часам после обработки.

Исследовали также изменение уровня фосфорилированного гистона H2AX, являющегося маркером двуцепочечных разрывов в клетках после обработки (Рисунок 10).

Рисунок 10 — Изменение уровня фосфорилированной формы гистона H2AX в клетках аденокарциномы легкого A-549 и NCI-H23, а также в фибробластах легкого Wi-38 после обработки XПС в течение 60с. Обсчет данных вестерн-блота представлен как среднее значение двух повторов \pm стандартное отклонение. Статистическая значимость обозначена как ns: p>0.05, *p \leq 0.05, **p \leq 0.01, тест Манна-Уитни.

Уровень фосфорилированного гистона H2AX увеличивается к 24 часам, что может быть обусловлено несколькими

причинами. Показано, что фосфорилирование этого гистона является ранней модификацией хроматина при фрагментации ДНК в процессе апоптоза (Rogakou

E.P. et al., 2000). Кроме того, фосфорилирование H2AX может происходить при репликативном стрессе (Ward I.M. et al., 2001).

4.4. Индукция стресса эндоплазматического ретикулума в ответ на обработку XПС

При анализе транскриптома опухолевых клеток, обработанных ХПС, наблюдали транскрипционные признаки индукции ответа на стресс ЭПР: увеличение экспрессии генов транскрипционных факторов ATF4, DDIT3, кошаперонов DNAJB2, DNAJB9, регуляторной субъединицы 15A фосфатазы 1 PPP1R15A (GADD34).

Для подтверждения вовлеченности этого процесса в ответ клеток на обработку ХПС оценивали экспрессию генов *ATF4* и *DDIT3* методом ОТ-ПЦР РВ в клетках А-549, после обработки ХПС. В качестве положительного контроля использовали клетки, обработанные индукторами стресса ЭПР: антибиотик туникамицин (0.5 мкг/мл), нарушающий N-гликозилирование белков в ЭПР, а также дитиотреитол (ДТТ, 4мМ), препятствующий формированию дисульфидных связей (Рисунок 11).

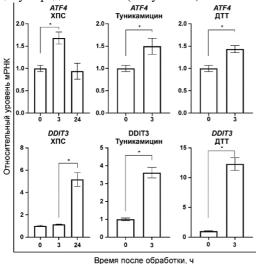


Рисунок 11 – Изменение экспрессии генов ATF4 и DDIT3 в клетках аденокарциномы легкого А-549 в на обработку XIIC. инкубацию с туникамицином (0.5 мкг/мл) и дитиотреитолом (4 мМ). Данные анализа методом ОТ-ПЦР РВ, проведенного через 3 и 24 ч обработки. Результаты представлены как среднее значение повторов двух стандартное Статистическая отклонение. значимость обозначена как *р ≤ 0.05 относительно контрольного образца, тест Манна-Уитни.

Было показано увеличение экспрессии исследованных генов после обработки ${\rm X\Pi C}.$

Обработка ХПС приводит к расширению просвета ЭПР в клетках, что может быть признаком стресса ЭПР (Рисунок 12).

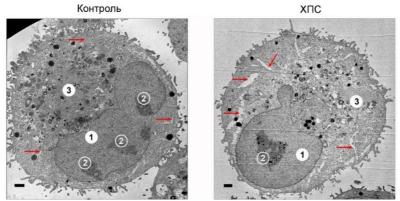


Рисунок 12 — микрофотографии клеток аденокарциномы легкого A-549 через 6 часов после обработки XПС в течение 60 с. Представлены репрезентативные изображения клеток. Цифрами обозначены: 1 — ядро, 2 — ядрышко, 3 — цитоплазма, стрелками показан просвет ЭПР. Масштабная метка соответствует 1 мкм.

Ранее в работе нашей группы было показано, что обработка ХПС стимулирует транслокацию белка кальретикулина (СКТ) из ЭПР на внешнюю плазматическую мембрану клетки, также, как и белка Hsp70, что дополнительно подтверждает стресс ЭПР под действием ХПС (Troitskaya O. et al., 2021).

4.5. Индукция аутофагии в ответ на обработку клеток ХПС

Активацию аутофагии на первом этапе исследовали при помощи ОТ-ПЦР РВ с использованием ген-специфичных праймеров для генов *SQSTM1* и *MAP1LC3B*, кодирующих белки р62 и LC3II соответственно. Значительных изменений в уровнях мРНК выявлено не было. Было показано усиление цитотоксического эффекта XПС при использовании хлорохина (CQ) — ингибитора последней стадии аутофагии (Рисунок 13).

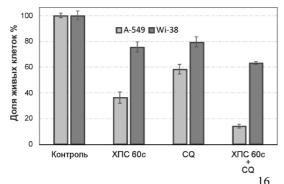


Рисунок 13 — Жизнеспособность клеток аденокарциномы легкого А-549 и фибробластов легкого Wi-38 после обработки ХПС в комбинации с хлорохином (20 мкМ). Данные МТТ-теста через 24 ч после обработки. Результаты представлены как среднее значение ± стандартное отклонение.

Исследовали также изменение уровней белков-участников аутофагии методом вестерн-блота через 6 и 24 ч после обработки ХПС или комбинацией ХПС с хлорохином в опухолевых клетках А-549 (Рисунок 14) и в фибробластах легкого Wi-38 (Рисунок 15).

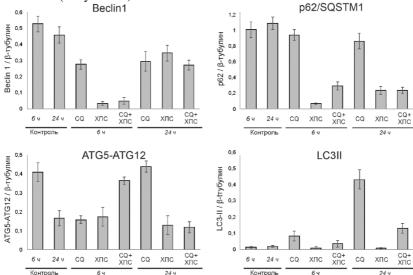


Рисунок 14 — Результаты анализа относительных уровней белков BECN1, p62, ATG5, LC3I/II методом вестерн-блота в клетках A-549 через 6 и 24 ч после обработки ХПС в течение 60 с. Данные денситометрического анализа представлены как среднее значение, рассчитанное по двум повторам \pm стандартное отклонение, нормализация на уровень тубулина.

В клетках A-549 через 6 часов после обработки ХПС наблюдается снижение уровней белков BECN1, ATG5 и p62, что может говорить о продуктивной аутофагии. Уровень LC3II остается, однако, на низком уровне, как и в контрольном образце. Добавление хлорохина частично подавляет снижение уровней этих белков.

В случае фибробластов легкого через 6 часов после обработки ХПС наблюдается повышенный уровень ATG5 и LC3II, уровень беклина 1 не изменяется. При этом через 24 часа уровень ATG5 снижается.

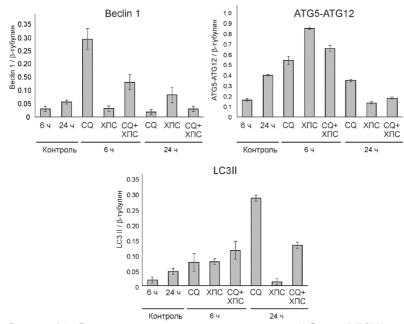


Рисунок 15 – Результаты анализа относительных уровней белков BECN1, p62, ATG5, LC3I/II методом вестерн-блота в клетках Wi-38 через 6 и 24 ч после обработки ХПС в течение 60 с. Данные денситометрического анализа представлены как среднее значение, рассчитанное по двум повторам \pm стандартное отклонение, нормализация на уровень тубулина.

Можно предположить, что индукция аутофагии в клетках является ранним ответом на обработку XПС.

4.6. Индукции апоптоза в ответ на обработку клеток ХПС

Было показано, что гибель опухолевых клеток происходит характеризуется наличием признаков апоптоза. Наблюдается транслокация фосфатидилсерина на поверхность клеток (Рисунок 16).

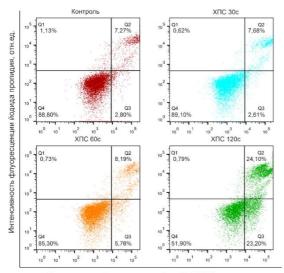


Рисунок 16 – Анализ доли клеток A-549 состоянии раннего апоптоза позднего апоптоза/некроза через 6 часов после обработки ХПС в течение 30. 60. 120c. Представлены репрезентативные результаты цитофлуориметрического анализа образцов клеток.

Интенсивность флуоресценции Annexin V-FITC, отн.ед.

Кроме того, было показано увеличение доли клеток с активированными каспазами-3 и -7, а также клеток с деполяризованными митохондриями (Рисунок 17).

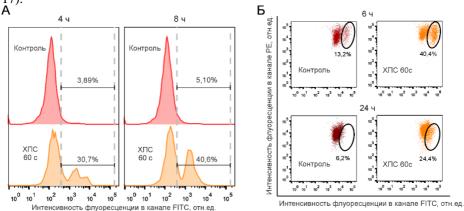


Рисунок 17 — А — Активность каспаз 3 и 7 в клетках А-549 через 4 и 8 часов после обработки ХПС в течение 60с. Репрезентативные результаты цитофлуориметрического анализа клеток, инкубированных с реагентом CellEvent $^{\rm TM}$ Caspase-3/7 Green Detection Reagent. Б — деполяризация митохондрий клеток А-549 через 6 и 24 ч после обработки ХПС в течение 60 с. Репрезентативные результаты проточной цитофлуориметрии клеток, инкубированных с красителем JC-1.

5. Исследование противоопухолевой эффективности XIIC in vivo

 $In\ vivo\$ использовали другой режим генерации XПС с однополярными положительными импульсами, амплитудой 4,2 кВ, частотой 22 кГц, продолжительностью импульсов 7 мкс и скоростью гелия, равной 9 л/мин. Было показано, что новый режим обладает схожим с синусоидальным режимом профилем цитотоксичности в отношении клеток аденокарциномы легкого, а также вызывает схожее изменение экспрессии гена GADD45B после обработки.

Противоопухолевое действие XПС оценивали на мышах линии C57BL/6 с трансплантированными подкожно клетками меланомы мыши B16. Группы животных указаны в таблице 1.

Таблица 1 – Экспериментальные группы и схема терапии животных

Группа	Количество животных	Схема терапии
Контроль	5	Животные получали 400 мкл раствора Рингера внутрибрюшинно.
ХПС	6	Опухоли животных обрабатывали ХПС в течение 2 мин.
ХПС+СQ	6	Животным вводили внутрибрющинно 300 мкл раствора хлорохина в дозе 50 мг/кг, через 1 час обрабатывали опухоли ХПС.

Проводили терапию по схеме, представленной на рисунке 18.

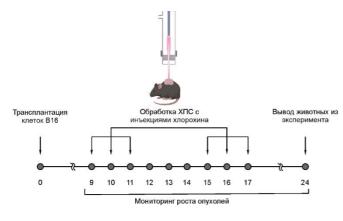


Рисунок 18 – Схема эксперимента по оценке противоопухолевой эффективности ХПС *in vivo*.

Проводили мониторинг роста опухолей (Рисунок 19) и веса мышей, а также контролировали температуру области обработки ХПС, которая не превышала 38°C.

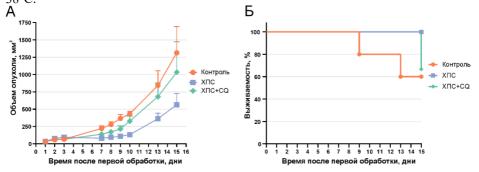


Рисунок 19 — Результаты оценки противоопухолевой эффективности ХПС $in\ vivo$ на мышах линии C57BL/6 с трансплантированными подкожно клетками меланомы мыши B16. А — динамика объемов опухолей животных. Б — выживаемость животных в экспериментальных группах.

Обработка ХПС позволяет достичь снижения объемов опухолей (Рисунок 19A) и увеличения выживаемости животных (Рисунок 19Б) по сравнению с контрольной группой. Индекс торможения роста опухоли составил 69,2% на 10 день после начала обработки и 57,1% на 15 день. Применение комбинации ХПС с хлорохином не оказывало достоверного эффекта на рост опухоли. Массы органов (печень, селезенка) не отличались от показателей контрольной группы, масса животных была незначительно ниже, чем в контрольной группе (p=0,09, критерий Краскела-Уоллиса).

Заключение

В работе проведено комплексное исследование процессов, происходящих в клетке при прямой обработке струей холодной плазмы в гелии. Исследована динамика уровней внеклеточных и внутриклеточных активных форм кислорода и азота (АФКА) после воздействия ХПС на моделях опухолевых и здоровых клеток, показано образование вторичных АФКА, которые нейтрализуются в здоровых клетках и вызывают повреждения макромолекул (липидов мембран, геномной ДНК) в опухолевых клетках. Показана активация ответа на стресс ретикулума эндоплазматического опухолевых В клетках, сопровождается инициацией аутофагии на раннем этапе ответа и гибели клеток на более позднем этапе. Ингибирование аутофагии, а также сигнальных путей, направленных на преодоление клетками состояния окислительного стресса, может быть перспективным подходом для усиления противоопухолевого эффекта ХПС.

выводы

- 1. Определены параметры прямой обработки культивируемых клеток человека холодной плазменной струей (ХПС) в гелии, снижающей жизнеспособность преимущественно опухолевых клеток (индекс селективности равен 1,5). Показана индукция гибели клеток с признаками апоптоза.
- 2. Исследована динамика уровней внеклеточных и внутриклеточных АФКА после облучения ХПС опухолевых А-549 и здоровых Wi-38 клеток легкого человека в культуре.
 - Показано, что облучение XПС ведет к дозозависимому увеличению концентрации NO_2^- в культуральной среде клеток.
 - Обработка ХПС приводит к увеличению содержания АФКА внутри клеток, в том числе за счет образования вторичных АФКА. Нейтрализация АФКА в здоровых клетках происходит быстрее, чем в опухолевых.
 - Повышенные уровни АФКА в клетках приводят к перекисному окислению липидов мембран.
- 3. На основании данных полнотранскриптомного секвенирования клеток A-549 и Wi-38 показаны различия в базовой транскрипционной активности генов метаболизма и генов, вовлеченных в ответ на окислительный стресс. В опухолевых клетках наблюдается повышенная экспрессия генов, участвующих в биосинтетических процессах, а также генов, регулирующих метаболизм глутатиона, железа и генов антиоксидантных ферментов.
- 4. Методами биоинформатического анализа транскриптома и анализа изменений основных молекулярных маркеров на примере клеточных линий А-549 и Wi-38 впервые изучен ранний и поздний ответы здоровых и опухолевых клеток на облучение ХПС.
 - Показана активацией сигнальных путей, участвующих в ответе на окислительный стресс, повреждение геномной ДНК, стресс эндоплазматического ретикулума, в регуляции гибели клеток, а также ингибирование прогрессии клеточного цикла.
 - Показана активация экспрессии генов *KLF4*, *FOS*, *ATF3*, *GADD45B* на уровне мРНК и генов ATF3 и GADD45B на уровне белка.
 - В опухолевых клетках после обработки ХПС происходит активация экспрессии генов ATF4 и DDIT3, связанных с ответом на стресс ЭПР, а также стресс-зависимое расширение просвета ЭПР.
 - Показана активация аутофагии как раннего клеточного ответа опухолевых и здоровых клеток на обработку ХПС. Аутофагия на раннем этапе препятствует индукции клеточной гибели.
 - Построена молекулярная модель, объясняющая селективность ХПС по отношению к опухолевым клеткам.

5. Показано, что прямое облучение опухолевых узлов мышей-носителей меланомы В16 с помощью ХПС, генерируемой в импульсном режиме в течение 2 мин вызывает торможение роста опухоли до 57%.

Основные результаты диссертации опубликованы в работах:

- 1. Schweigert, I.V.; Zakrevsky, D.E.; Gugin, P.P.; Milakhina, E.; **Biryukov, M.**; Keidar, M.; Koval, O. Effect of Voltage Pulse Duration on Electrophysical and Thermal Characteristics of Cold Atmospheric Plasma Jet. Plasma Sources Sci. Technol. 2022, doi:10.1088/1361-6595/aca120.
- 2. Patrakova, E.; **Biryukov, M.**; Troitskaya, O.; Gugin, P.; Milakhina, E.; Semenov, D.; Poletaeva, J.; Ryabchikova, E.; Novak, D.; Kryachkova, N.; et al. Chloroquine Enhances Death in Lung Adenocarcinoma A549 Cells Exposed to Cold Atmospheric Plasma Jet. Cells 2023, 12, 290, doi:10.3390/cells12020290.
- 3. **Biryukov**, **M.**; Semenov, D.; Kryachkova, N.; Polyakova, A.; Patrakova, E.; Troitskaya, O.; Milakhina, E.; Poletaeva, J.; Gugin, P.; Ryabchikova, E.; et al. The Molecular Basis for Selectivity of the Cytotoxic Response of Lung Adenocarcinoma Cells to Cold Atmospheric Plasma. Biomolecules 2023, 13, 1672, doi:10.3390/biom13111672.
- 4. **Biryukov, M.**; Schweigert, I.; Polyakova, A.; Krychkova, N.; Varlamov, M.; Gorbunova, E.; Epanchintseva, A.; Pyshnaya, I.; Zakrevsky, D.; Milakhina, E.; et al. Cold Atmospheric Plasma Jet and Conjugates of Gold Nanoparticles with Tyrp1 Antibodies Efficiently Suppress Growth of B16 Tumor. Plasma Medicine 2025, 15, 1–16, doi: 10.1615/PlasmaMed.2025057895